Since a, b, c....k are the roots of the given equation , we have the identity
xn+p1xn−1+p2xn−2.....+Pn−1x+Pn
= (x - a)(x - b)(x - c)......(x - k). ...(1)
in the identity (1) put x = i
Then in+p1in−1+p2in−1+...pn−1i+pn
= (i - a)(i - b)(i - c)......(i - k).
or in[1+p1i−1+p2i−2+p3i−3+p4i−4....pn−1i−(n−1)+pni−n]
= (i - a)(i - b)(i - c)......(i - k)
But i−1=1i−i,i−2=1i2−1,i−3=1i3=i,i−4=1i4=1etc.
∴ The above identity may be written as
in[(1−p2+p4−..)−i(p1−p3+p5−..)]
= (−1)n (a - i)(b - i)(c - i).....(k - i)......(2)
Similarly putting x = - i in (1), we shall obtain
(−1)n[(1−p2+p4−..)−i(p1−p3+p5−..)]
= (−1)n (a - i)(b - i)(c - i).....(k - i)......(3)
Multiplying (2) and (3), we get
(−1)n.i2n[(1−p2+p4−..)2−i(p1−p3+p5−..)2]
=(−1)2n(a2−i2)(b2−i2)(c2−i2)....(k2−i2)
∴(−1)ni2n=(−1)n(−1)n=(−1)2n=1,
this gives
(1−p2+p4−..)2+(p1−p3+p5−..)2
=(a2+1)(b2+1)(c2+1).....(k2+1)