wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a,b.c...k are the roots of the equation
xn+p1xn1+p2xn2.....+Pn1x+Pn=0(p1,p2,p3....arereal),thenprovethat(1+a2)(1+b2)...(1+k2)=(1p2+p4....)2+(p1p3+p5..)2

Open in App
Solution

Since a, b, c....k are the roots of the given equation , we have the identity
xn+p1xn1+p2xn2.....+Pn1x+Pn
= (x - a)(x - b)(x - c)......(x - k). ...(1)
in the identity (1) put x = i
Then in+p1in1+p2in1+...pn1i+pn
= (i - a)(i - b)(i - c)......(i - k).
or in[1+p1i1+p2i2+p3i3+p4i4....pn1i(n1)+pnin]
= (i - a)(i - b)(i - c)......(i - k)
But i1=1ii,i2=1i21,i3=1i3=i,i4=1i4=1etc.
The above identity may be written as
in[(1p2+p4..)i(p1p3+p5..)]
= (1)n (a - i)(b - i)(c - i).....(k - i)......(2)
Similarly putting x = - i in (1), we shall obtain
(1)n[(1p2+p4..)i(p1p3+p5..)]
= (1)n (a - i)(b - i)(c - i).....(k - i)......(3)
Multiplying (2) and (3), we get
(1)n.i2n[(1p2+p4..)2i(p1p3+p5..)2]
=(1)2n(a2i2)(b2i2)(c2i2)....(k2i2)
(1)ni2n=(1)n(1)n=(1)2n=1,
this gives
(1p2+p4..)2+(p1p3+p5..)2
=(a2+1)(b2+1)(c2+1).....(k2+1)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE by Factorisation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon