Given equation is xn+p1xn−1+p2xn−2+…+pn−1x+pn=0
As a,b,c,…,n are the roots of the given equation,
(x−a)(x−b)(x−c)+…(x−n)=xn+p1xn−1+p2xn−2+…+pn−1x+pn…..(1)
Substitute roots of x2+1 = 0 in the (1), we have
(i−a)(i−b)(i−c)+…(i−n)=in+p1in−1+p2in−2+…+pn−1i+pn
Or (i−a)(i−b)(i−c)+…(i−n)=(1−p2+p4+…)−i(p1−p3+p5…)………..(2)
(−i−a)(−i−b)(−i−c)+…(−i−n)=(−i)n+p1(−i)n−1+p2(−i)n−2+…+pn−1(−i)+pn
Or (i+a)(i+b)(i+c)+…(i+n)=(1−p2+p4+…)+i(p1−p3+p5…)………..(3)
Multiplying (2) and (3), we get
(1+a2)(1+b2)…(1+n2)=(1−p2+p4+…)2+(p1−p3+p5…)2