wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If a+b+c0 and ∣ ∣abcbcacab∣ ∣=0, then, a=b=c.

A
True
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
False
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A True
Let A=∣ ∣abcbcacab∣ ∣

Applying R1R1+R2+R3, we get,
A=∣ ∣a+b+ca+b+ca+b+cbcacab∣ ∣

Taking common (a+b+c) from R1, we get,
A=(a+b+c)∣ ∣111bcacab∣ ∣

Applying C2C2C1 and C3C3C1, we get,
A=(a+b+c)∣ ∣100bcbabcacbc∣ ∣

On expanding along R1, we get,
A=(a+b+c)[(cb)(bc)(ab)(ac)]
A=(a+b+c)[c2b2+2bca2+ac+abbc]
A=12(a+b+c)×(2)(a2b2c2+ab+bc+ca)

A=12(a+b+c)[a2+b2+c22ab2bc2ca+a2+b2+c2]

A=12(a+b+c)[a2+b22ab+b2+c22bc+c2+a22ac]

A=12(a+b+c)[(ab)2+(bc)2+(ca)2]

Since, A=0, therefore,
12(a+b+c)[(ab)2+(bc)2+(ca)2]=0

(ab)2+(bc)2+(ca)2=0
ab=bc=ca=0
a=b=c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon