The correct option is
A True
Let
A=∣∣
∣∣abcbcacab∣∣
∣∣
Applying R1→R1+R2+R3, we get,
A=∣∣
∣∣a+b+ca+b+ca+b+cbcacab∣∣
∣∣
Taking common (a+b+c) from R1, we get,
A=(a+b+c)∣∣
∣∣111bcacab∣∣
∣∣
Applying C2→C2−C1 and C3→C3−C1, we get,
A=(a+b+c)∣∣
∣∣100bc−ba−bca−cb−c∣∣
∣∣
On expanding along R1, we get,
A=(a+b+c)[(c−b)(b−c)−(a−b)(a−c)]
A=(a+b+c)[−c2−b2+2bc−a2+ac+ab−bc]
A=−12(a+b+c)×(−2)(−a2−b2−c2+ab+bc+ca)
A=−12(a+b+c)[a2+b2+c2−2ab−2bc−2ca+a2+b2+c2]
A=−12(a+b+c)[a2+b2−2ab+b2+c2−2bc+c2+a2−2ac]
A=−12(a+b+c)[(a−b)2+(b−c)2+(c−a)2]
Since, A=0, therefore,
−12(a+b+c)[(a−b)2+(b−c)2+(c−a)2]=0
(a−b)2+(b−c)2+(c−a)2=0
a−b=b−c=c−a=0
a=b=c