The correct option is C
2
Here, Given A+B+C=π.
Now, we can write the expression
cosAsinBsinC+cosBsinAsinC+cosCsinBsinA as
cosAsinA+cosBsinB+cosCsinCsinAsinBsinC=12(2cosAsinA+2cosBsinB+2cosCsinCsinAsinBsinC)=12(sin2A+sin2B+sin2CsinAsinBsinC)
Now, we know the expression
when A + B + C = π⇒sin2A+sin2B+sin2C =4sinAsinBsinC
Substituting the above equation, we get
12(sin2A+sin2B+sin2CsinAsinBsinC)=42(sinAsinBsinCsinAsinBsinC)=2
Thus, Option c. is correct.