If A+B+C=π, (A,B,C)>0 and the angle C is obtuse then
tanAtanB>1
tanAtanB<1
tanAtanB=1
None of these
Step 1: Determine the sign of tanC
Given that A+B+C=π
A+B+C=π⟹A+B=π–C⟹tanA+B=tan(π–C)⟹tanA+tanB1–tanAtanB=−tanC....(1)
Also, given that C is obtuse. Thus, tanC will be negative,
tanC<0….(2)
Step 2: Determine the sign of 1-tanAtanB
A and B are acute that means less than π2.
⇒tanA+tanB>0….(3)
From (1),(2)and(3), 1–tanAtanB>0
Hence, tanAtanB<1. Hence option (B) is the correct option.