wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=π and cosA=cosBcosC, then show that cotBcotC=12 and tanA=tanB+tanC

Open in App
Solution

(i) A=180(B+C)
cosA=cos(180(BC))
cosA=cos(B+C)
Given cosA=cosBcosC
cosBcosC=cos(B+C)
cosBcosC=cosBcosC+sinBsinC
2cosBcosC=sinBsinC
cosBcosCsinBsinC=12
cotBcotC=12

Given cosA=cosBcosC
(ii) A+B+C=180
B+C=180A
=sin(B+C)=sin(180A)
=sin(B+C)=sinA
Also, cosB.cosC=cosA
Consider,tanAtanBtanC
=tanA(sinBcosB+sinCcosC)
=tanA[sinBcosC+sinCcosBcosBcosC]
=tanA[sin(B+C)]cosCcosC
=tanAsin(180A)cosA
=tanAsinAcosA=tanAtanA
=0
tanA=tanB+tanC.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon