wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=π and cosA=cosBcosC, show that
2cotBcotC=1.

Open in App
Solution

Given,
cosA=cosB.cosC
or, sinAcosA=sinAcosBcosC
or, tanA=sin(B+C)cosB.cosC
or, tanA=sinBcosC+cosBsinCcosBcosC
or, tanA=tanB+tanC
Then tan(B+C)=tanB+tanC1tanBtanC
or, tanA=tanA1tanBtanC
or, tanBtanC=2
or, cotBcotC=12
or, 2cotB.cotC=1.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration
PHYSICS
Watch in App
Join BYJU'S Learning Program
CrossIcon