wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=πandcosA=cosB.cosC then show that cotBcotC=12 and tanB+tanC=tanA

Open in App
Solution

Given that,

A+B+C=π and cosA=cosBcosC

B+C=πA …… (1)

On taking cos both side and we get

cos(B+C)=cos(πA)

cos(B+C)=cosA

cosBcosCsinBsinC=cosA

cosBcosCsinBsinC=cosBcosC

For Ist part,

cosBcosCsinBsinCcosBcosC=1

cosBcosCcosBcosCsinBsinCcosBcosC=1

1tanBtanC=1

1+1=tanB tanC

tanBtanC=2

Taking reciprocal both side and we get,

1tanBtanC=12

cotBcotC=12

Hence, proved.

For IInd part,

L.H.S.

tanB+tanC

=sinBcosB+sinCcosC

=sinBcosC+cosBsinCcosBcosC

=sin(B+C)cosBcosC

=sin(πA)cosA

=sinAcosA

=tanAR.H.S.

Hence, proved


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon