Given that,
A+B+C=π and cosA=cosBcosC
B+C=π−A …… (1)
On taking cos both side and we get
cos(B+C)=cos(π−A)
cos(B+C)=−cosA
cosBcosC−sinBsinC=−cosA
cosBcosC−sinBsinC=−cosBcosC
For Ist part,
cosBcosC−sinBsinCcosBcosC=−1
cosBcosCcosBcosC−sinBsinCcosBcosC=−1
1−tanBtanC=−1
1+1=tanB tanC
tanBtanC=2
Taking reciprocal both side and we get,
1tanBtanC=12
cotBcotC=12
Hence, proved.
For IInd part,
L.H.S.
tanB+tanC
=sinBcosB+sinCcosC
=sinBcosC+cosBsinCcosBcosC
=sin(B+C)cosBcosC
=sin(π−A)cosA
=sinAcosA
=tanAR.H.S.
Hence, proved