wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A + B + C = π, Prove that

cos 4A + cos 4B + cos 4C = -1 + 4 cos 2A cos 2B cos 2C.

Open in App
Solution

We have

LHS = cos4A+cos4B+cos4C

=2cos(2A+2B)cos(2A2B)+cos4C

=2cos(2π2C)cos(2A2B)+(2cos22C1)

[A+B+C=π(2A+2B)=(2π2C)]

=2cos2C 2cos(2A2B)+2cos22C1

=2cos2C[(2A2B)+cos2C]1

=2cos2C[(2A2B)+cos[2π(2A+2B)]]1

[2A+2B+2C=2π2C=2π(2A+2B)]=2cos2C[cos(2A2B)+cos(2A+2B)]

=2cos2C[2cos2A cos2B]1

=1+4cos 2A cos 2B cos 2C=RHS

cos 4A+cos 4B+cos 4C=1+4cos 2A cos 2B cos 2C


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Inverse of a Function
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon