If A + B + C = π, Prove that
cos 4A + cos 4B + cos 4C = -1 + 4 cos 2A cos 2B cos 2C.
We have
LHS = cos4A+cos4B+cos4C
=2cos(2A+2B)cos(2A−2B)+cos4C
=2cos(2π−2C)cos(2A−2B)+(2cos22C−1)
[∵A+B+C=π⇒(2A+2B)=(2π−2C)]
=2cos2C 2cos(2A−2B)+2cos22C−1
=2cos2C[(2A−2B)+cos2C]−1
=2cos2C[(2A−2B)+cos[2π−(2A+2B)]]−1
[∵2A+2B+2C=2π⇒2C=2π−(2A+2B)]=2cos2C[cos(2A−2B)+cos(2A+2B)]
=2cos2C[2cos2A cos2B]−1
=−1+4cos 2A cos 2B cos 2C=RHS
∴cos 4A+cos 4B+cos 4C=−1+4cos 2A cos 2B cos 2C