If A+B+C =π, prove that cos A + cos B - cos C = (4cosA2cosB2sinC2)−1
cosA+cosB−cosC
=2cos(A+B2)cos(A−B2)−(1−2 sin2 C2)
=2cos(π2−C2) cos(A−B2)−1+2 sin2 C2
=2sinC2[cos(A−B2)+sinC2]−1
=2sinC2[cos(A−B2)+sin{π2−(A+B)2}]−1
=2sinC2[cosA−B2+cosA+B2]−1
=2sinC2{2 cosA2cos B2}−1
={4cosA2cosB2sinC2}−1=RHS.
∴cos A+cos B−cos C=(4cosA2cosB2sinC2)−1