wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C =π, prove that cos A + cos B - cos C = (4cosA2cosB2sinC2)1

Open in App
Solution

cosA+cosBcosC

=2cos(A+B2)cos(AB2)(12 sin2 C2)

=2cos(π2C2) cos(AB2)1+2 sin2 C2

=2sinC2[cos(AB2)+sinC2]1

=2sinC2[cos(AB2)+sin{π2(A+B)2}]1

=2sinC2[cosAB2+cosA+B2]1

=2sinC2{2 cosA2cos B2}1

={4cosA2cosB2sinC2}1=RHS.

cos A+cos Bcos C=(4cosA2cosB2sinC2)1


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon