wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=π, prove that, cotA+cotB+cotC=cotAcotBcotC+cscAcscBcscC.

Open in App
Solution

As A+B+C=π, so,

cos(A+B+C)=cosπ

cos(A+B+C)=1

cos(A+B)cosCsin(A+B)sinC=1

(cosAcosBsinAsinB)cosC(sinAcosB+cosAsinB)sinC=1

cosAcosBcosCsinAsinBcosCsinAcosBsinCcosAsinBsinC=1

Divide both sides by sinAsinBsinC,

cosAcosBcosCsinAsinBcosCsinAcosBsinCcosAsinBsinCsinAsinBsinC=1sinAsinBsinC

cotAcotBcotCcotCcotBcotA=cscAcscBcscC

cotAcotBcotC+cscAcscBcscC=cotA+cotB+cotC

Hence proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression - Sum of n Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon