As A+B+C=π, so,
cos(A+B+C)=cosπ
cos(A+B+C)=−1
cos(A+B)cosC−sin(A+B)sinC=−1
(cosAcosB−sinAsinB)cosC−(sinAcosB+cosAsinB)sinC=−1
cosAcosBcosC−sinAsinBcosC−sinAcosBsinC−cosAsinBsinC=−1
Divide both sides by sinAsinBsinC,
cosAcosBcosC−sinAsinBcosC−sinAcosBsinC−cosAsinBsinCsinAsinBsinC=−1sinAsinBsinC
cotAcotBcotC−cotC−cotB−cotA=−cscAcscBcscC
cotAcotBcotC+cscAcscBcscC=cotA+cotB+cotC
Hence proved.