wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=π, prove that tanA2tanB2+tanB2tanC2+tanC2tanA2=1.

Open in App
Solution

It is given that A+B+C=π, then,


A2+B2+C2=π2


A2+B2=π2C2


tan(A2+B2)=tan(π2C2)


tanA2+tanB21tanA2tanB2=cotC2


tanA2+tanB21tanA2tanB2=1tanC2


tanA2tanC2+tanB2tanC2=1tanA2tanB2


tanA2tanB2+tanB2tanC2+tanA2tanC2=1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Adaptive Q10
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon