If A + B + C = π, prove that
cot A2 + cot B2+cot C2=cot A2 cot B2cot C2
Here, A + B + C = π
⇒(A2+B2)=(π2−C2)
⇒cot(A2+B2)=cot(π2−C2)=tanC2
⇒cotA2cotB2−1cotA2+cotB2=1cotC2
⇒cotA2+cotB2=cotA2cotB2cotC2−cotC2
⇒cot+cotB2+cotC2=cotA2cotB2cotC2
Prove that
2a^2+2b^2+2c^2-2ab-2bc-2ca={(a-b)^2+(b-c)^2+(c-a)^2}