show that cos(A/2)+cos(B/2)cos(C/2)=4cos{(π−A)/4}cos{(π−B)/4}cos{(π−C)/4}=4cos{(B+C)/4}cos{(C+A)/4}cos{(A+B)/4}.
Open in App
Solution
A+B+C=π ∴{(AB)/4}={(π−C)/4} etc. for 2nd form (1) L.H.S. =2cosA+B4cosA−B4+sin(π2−C2) (Note) =2cosπ−C4cosA−B4+2sinπ−C4cosπ−C4 [∵sinθ=2sin(θ/2)cos(θ/2)] =2cosπ−C4[cosA−B4+sinA+B4], by (1) =2cosπ−C4[cosA−B4+cos(π2−A+B4)] =2cosπ−C4[2cosπ−A4cosπ−B4] =4cosπ−A4cosπ−B4cosπ−C4.