If A + B + C = π, the maximum value of cos A + cos B + cos C can have is --
⇒C=π−(A+B)......(i)
Consider given function f(A, B)=cos A + cos B + cos C
⇒f(A,B)=cosA+cosB+cos(π−(A+B))
f(A,B)=cosA+cosB−cos(A+B)
Partially differentiating with respect to A and B, we get
fA(A,B)=sin(A+B)−sinA=0......(ii) and fB(A,B)=sin(A+B)−sinB=0.......(iii)
Solving equation(ii) and (iii) to get the critical points.
⇒sinA=sinB
∴A=B
Substitute A=B in equation(ii), we get
sin(A+A)−sinA=0
⇒sin2A=sinA
⇒2sinAcosA=sinA
⇒sinA(2cosA−1)=0
⇒(2cosA−1)=0 and sinA=0 represents the boundary of the given function that can't be consider.
⇒cosA=12
⇒cosA=cosπ3
∴A=π3
So, A=B=π3 and C=π−(A+A)⇒C=π−2A
⇒C=π−2(π3)
=3π−2π3
C=π3
Therefore, the maximum value occurs at A=B=C=π3 and its value f(π3,π3)=cosπ3+cosπ3+cosπ3
=3cosπ3
=3×12
=32