If A+B+C=π,thencos2A+cos2B+cos2C is
1+4cosAcosBsinC
-1+4sinAsinBcosC
-1–4cosAcosBcosC
None of these
Step 1: Find the value of cos2A+cos2B:
A+B+C=180°….(1)cos2A+cos2B=2cos(2A+2B)2cos(2A–2B)2=2cos(A+B)cos(A–B)=2cos(180°–C)cos(A–B)(using(1))=-2cosCcos(A–B)
Step 2: Find the value of cos2A+cos2B+cos2C:
cos2A+cos2B+cos2C=-2cosCcos(A–B)+cos2C=-2cosCcos(A–B)+(2cos2C–1)(Usingtheformulacos2x=2cos2x–1)=-2cosC[cos(A–B)–cosC]–1=-2cosC[cos(A–B)+cos(A+B)]–1∵cosC=cos[180°–(A+B)]=-2cosC[2cosAcosB]–1=-1–4cosAcosBcosC
Hence, option (C) is the correct option.