wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=π, then prove that cos2A+cos2B+cos2C=14cosAcosBcosC

Open in App
Solution

Given: A+B+C=π

L.H.S=cos2A+cos2B+cos2C

=[2cos(A+B)cos(AB)]+(2cos2C1)........cosC+cosD=2cosC+D2cosCD2

=2cos(180C)cos(AB)+2cos2C1

=2cosC(cos(AB)cosC)1

=2cosC(cos(AB)+cos(A+B))1

=2cosC(2cosAcosB)1

=4cosAcosBcosC1

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon