wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=π , then prove that
sin2A+sin2B+sin2C=2+2cosAcosBcosC .

Open in App
Solution

A+BC=π (given)
,C=π(A+B)(i)
Now,
sin2A+sin2B+sin2C=1cos2A2+1cos2B2+1cos2C2
[As cos2x=12sin2x ]
=3212[cos2A+cos2B+cos2C]
=[Using cosC+cos0=2cosC+D2cosCD2]
=3212[2cos(A+B)cos(AB)+cos2C]
=3212[2cos(πC)cos(AB)+cos2C] (From eq (i))
=3212[2cosCcos(AB)+2cos2C1] (cos(πx)=cosx)
=32+cosCcos(AB)cos2C+12 [multiplying 12 inside bracket]
=2+cosC[cos(AB)cosC]
=2+cosC[cos(AB)cos(π(A+B))] [From eq (i)]
=2+cosC[cos(AB)+cos(A+B)]
=2+cosC×[2cosAcosB]
=2+2cosAcosBcosC


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon