wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=π, then prove that sin3Acos(BC)+sin3Bcos(CA)+sin3Ccos(AB)=3sinAsinBsinC

Open in App
Solution

LHS
A+B+C=πA=(B+C)+πsin3Acos(BC)+sin3Bcos(CA)+sin3Ccos(AB)sin2Asin(B+C)cos(BC)+sin2Bsin(A+C)cos(BC)+sin2Csin(A+B)cos(BC)12sin2A(sin2B+sin2C)+12sin2B(sin2A+sin2C)+12sin2C(sin2A+sin2B)12sin2A(2sinBcosB+2sinCcosC)+12sin2B(2sinCcosC+2sinAcosA)+12sin2C(2sinAcosA+2sinBcosB)sinAsinB(sinAcosB+cosAsinB)+sinBsinC(sinBcosC+cosBsinC)+sinAsinC(sinAcosC+cosAsinC)sinAsinBsin(A+B)+sinCsinBsin(B+C)+sinAsinCsin(A+C)3sinAsinBsinC
LHS=RHS

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon