A+B+C= π
Sin2θ=1−cos2θ2⇒Sin4θ=(1−cos2θ2)2
cos2A+cos2B+cos2B=−1−4cosAcosBcosC
cos22A+cos22B+cos22B=1+2cos2Acos2Bcos2C
LHS=sin4A+sin4B+sin4C
=(1−cos2A2)2+(1−cos2B2)2+(1−cos2C2)2
=14[1+cos22A−2cos2A+1+cos22B−2cos2B+1+cos22C−2cos2C]
=14[3+(1+2cos2Acos2Bcos2C)−2(−1−4cosAcosBcosC)]
=14[4+2cos2Acos2Bcos2C+2+8cosAcosBcosC]
=14[6+8cosAcosBcosC+2cos2Acos2Bcos2C]
=322cosAcosBcosC+2cos2Acos2Bcos2C
Lhs= RHS
Hence proof