wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=π , then prove that sin4A+sin4B+sin4C=32+2cosAcosBcosC+12cos2Acos2Bcos2C.

Open in App
Solution


A+B+C= π


Sin2θ=1cos2θ2Sin4θ=(1cos2θ2)2


cos2A+cos2B+cos2B=14cosAcosBcosC


cos22A+cos22B+cos22B=1+2cos2Acos2Bcos2C


LHS=sin4A+sin4B+sin4C


=(1cos2A2)2+(1cos2B2)2+(1cos2C2)2


=14[1+cos22A2cos2A+1+cos22B2cos2B+1+cos22C2cos2C]


=14[3+(1+2cos2Acos2Bcos2C)2(14cosAcosBcosC)]


=14[4+2cos2Acos2Bcos2C+2+8cosAcosBcosC]


=14[6+8cosAcosBcosC+2cos2Acos2Bcos2C]


=322cosAcosBcosC+2cos2Acos2Bcos2C


Lhs= RHS

Hence proof


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Principal Solution
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon