We have,
A+B+C=π …….. (1)
L.H.S
=sin4A+sin4B+sin4C
=(sin2A)2+(sin2B)2+(sin2C)2
=(1−cos2A2)2+(1−cos2B2)2+(1−cos2C2)2
=14[1+cos22A−2cos2A+1+cos22B−2cos2B+1+cos22C−2cos2C]
=14[3+cos22A+cos22B+cos22C−2(cos2A+cos2B+cos2C)]
=14[3+(cos4A+12)+(cos4B+12)+(cos4C+12)−2(cos2A+cos2B+cos2C)]
=14[3+(cos4A2+12)+(cos4B2+12)+(cos4C2+12)−2(cos2A+cos2B+cos2C)]
=14[3+32(cos4A+cos4B+cos4C)−2(cos2A+cos2B+cos2C)]
=14[3+32[2cos(4A+4B2)⋅cos(4A−4B2)+cos4C]−2[2cos(2A+2B2)⋅cos(2A−2B2)+cos2C]]
=14[3+32[2cos(2(A+B))⋅cos(2(A−B))+cos4C]−2(2cos(A+B)⋅cos(A−B)+cos2C)]
=14[3+32[2cos(2(π−C))⋅cos(2(A−B))+cos4C]−2(2cos(π−C)⋅cos(A−B)+cos2C)]
=14[3+32[2cos2C⋅cos(2(A−B))+2cos22C−1]−2(−2cosC⋅cos(A−B)+cos2C)]
=14[3+32[2cos2C(cos(2(A−B))+cos2C)−1]−2(cos2C−2cosC⋅cos(A−B))]
=14[3+32[2cos2C(cos(2(A−B))+cos2(π−(A+B)))−1]−2(2cos2C−1−2cosC⋅cos(A−B))]
=14[3+32[2cos2C(cos(2(A−B))+cos(2π−2(A+B)))−1]−4cos2C+2+4cosC⋅cos(A−B)]
=14[3+32[2cos2C(cos(2(A−B))+cos(2(A+B)))−1]−4cosC[cosC−cos(A−B)]+2]
=14[3+32[2cos2C(cos(2(A−B))+cos2(A+B))−1]−4cosC[cosC−cos(A−B)]+2]
=14[3+32[2cos2C(cos(2(A+B))+cos2(A−B))−1]−4cosC[cosC−cos(A−B)]+2]
=14[3+32[2cos2C(2cos2Acos2B)−1]−4cosC[cosC−cos(A−B)]+2]
=14[3+3cos2C(2cos2Acos2B)−32−2cosC(cos(π−(A+B))−cos(A−B))+2]
=14[5+6cos2Acos2Bcos2C−32−2cosC(−cos(A+B)−cos(A−B))]
=14[72+6cos2Acos2Bcos2C+2cosC(cos(A+B)+cos(A−B))]
=14[72+6cos2Acos2Bcos2C+2cosC(2cosAcosB)]
=14[72+6cos2Acos2Bcos2C+4cosAcosBcosC]
=78+cosAcosBcosC+32cos2Acos2Bcos2C
Hence, proved.