CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=π, then prove that sin4A+sin4B+sin4C=78+cosAcosBcosC+32cos2Acos2Bcos2C

Open in App
Solution

We have,

A+B+C=π …….. (1)

L.H.S

=sin4A+sin4B+sin4C

=(sin2A)2+(sin2B)2+(sin2C)2

=(1cos2A2)2+(1cos2B2)2+(1cos2C2)2

=14[1+cos22A2cos2A+1+cos22B2cos2B+1+cos22C2cos2C]

=14[3+cos22A+cos22B+cos22C2(cos2A+cos2B+cos2C)]

=14[3+(cos4A+12)+(cos4B+12)+(cos4C+12)2(cos2A+cos2B+cos2C)]

=14[3+(cos4A2+12)+(cos4B2+12)+(cos4C2+12)2(cos2A+cos2B+cos2C)]

=14[3+32(cos4A+cos4B+cos4C)2(cos2A+cos2B+cos2C)]

=14[3+32[2cos(4A+4B2)cos(4A4B2)+cos4C]2[2cos(2A+2B2)cos(2A2B2)+cos2C]]

=14[3+32[2cos(2(A+B))cos(2(AB))+cos4C]2(2cos(A+B)cos(AB)+cos2C)]

=14[3+32[2cos(2(πC))cos(2(AB))+cos4C]2(2cos(πC)cos(AB)+cos2C)]

=14[3+32[2cos2Ccos(2(AB))+2cos22C1]2(2cosCcos(AB)+cos2C)]

=14[3+32[2cos2C(cos(2(AB))+cos2C)1]2(cos2C2cosCcos(AB))]

=14[3+32[2cos2C(cos(2(AB))+cos2(π(A+B)))1]2(2cos2C12cosCcos(AB))]

=14[3+32[2cos2C(cos(2(AB))+cos(2π2(A+B)))1]4cos2C+2+4cosCcos(AB)]

=14[3+32[2cos2C(cos(2(AB))+cos(2(A+B)))1]4cosC[cosCcos(AB)]+2]

=14[3+32[2cos2C(cos(2(AB))+cos2(A+B))1]4cosC[cosCcos(AB)]+2]

=14[3+32[2cos2C(cos(2(A+B))+cos2(AB))1]4cosC[cosCcos(AB)]+2]

=14[3+32[2cos2C(2cos2Acos2B)1]4cosC[cosCcos(AB)]+2]

=14[3+3cos2C(2cos2Acos2B)322cosC(cos(π(A+B))cos(AB))+2]

=14[5+6cos2Acos2Bcos2C322cosC(cos(A+B)cos(AB))]

=14[72+6cos2Acos2Bcos2C+2cosC(cos(A+B)+cos(AB))]

=14[72+6cos2Acos2Bcos2C+2cosC(2cosAcosB)]

=14[72+6cos2Acos2Bcos2C+4cosAcosBcosC]

=78+cosAcosBcosC+32cos2Acos2Bcos2C

Hence, proved.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 3
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon