If A+B+C=Ļ then prove that sinA+sinB+sinC=4cosA2ĆcosB2ĆcosC2
Prove the given result
Given that ,
A+B+C=Ļ
And,(A+B)=Ļ-C
We have to prove:
sinA+sinB+sinC=4cosA2ĆcosB2ĆcosC2 .
LHS :-
sinA+sinB+sinC=2sinA+B2cosA-B2+sinC[Standardidentity]=2sinĻ-C2cosA-B2+2sinC2cosC2āµsin2x=2sinxcosx=2sinĻ2-C2cosA-B2+2cosĻ-A-B2cosC2=2cosC2cosA-B2+2cosA+B2cosC2āµsinĻ2-Īø=cosĪø=2cosC2ĆcosA-B2+cosA+B2Standardidentity=4cosC2ĆcosB2ĆcosA2
ā“ LHS=RHS
Hence, proved.
Write the following in product form :
7p3q4r5=7ĆpĆpĆpĆqĆqĆqĆqĆrĆrĆrĆrĆr
If C1,C2,C3are the usual binomial coefficients and S=C1+2C2+3C3+...+nCn, then S equals
If C0,C1,.....,Cā denote the binomial coefficients in the expansion of(1+x)n. Then, the value of C1-C22+C33-C44+....(up to n terms) is
If C be the centroid of the triangle having vertices(3,-1),(1,3) and (2,4). Let P be the point of intersection of the lines x+3y-1=0and3x-y+1=0, then the line passing through the pointsCandP also passes through the point: