If A + B + C = π then tan2A2 + tan2B2 + tan2C2 is always
≥ 1
Given A + B + C = π
All the angles given with A2, B2 and C2 form
So, A+B+C2 = π2
A2 + BC = π2 - C2
tan (A2+BC) + tan (π2−C2)
tanA2+tanB21−tanA2.tanB2 = cotC2 = 1tanC2
tanA2 . tanC2 + tanB2 . tanC2 = 1 - tanA2 . tanB2
tanA2 . tanC2 + tanA2 . tanB2 + tanA2 . tanB2 = 1
Let x = tanA2
y = tanB2
z = tanC2
then
xy + yz + zx = 1
We need to find the value of tan2A2+tan2B2+tan2C2 or x2+y2+z2
We know
tan2A2+tan2B2+tan2C2 or x2+y2+z2
x2 + y2 - 2xy + y2 + z2 - 2yz + z2 + x2 - 2xz ≥ 0
2(x2 + y2 + z2) - 2(xy + yz + zx) ≥ 0
(x2 + y2 + z2) - (xy + yz + zx) ≥ 0
Given xy + yz + zx = 1
x2 + y2 + z2 - 1 ≥ 0
x2 + y2 + z2 ≥ 1
Replacing x = tanA2
Replacing x = tanA2
y = tanB2
z = tanC2
So tan2C2 + tan2C2 + tan2C2 ≥ 1