wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=π then the expression sin2A+sin2Bsin2Csin2A+sin2B+sin2C reduces to

Open in App
Solution

Given that
A+B+C=π
Now
sin2A+sin2Bsin2Csin2A+sin2B+sin2C

2sin2A+2B2cos2A2B2sin2C2sin2A+2B2cos2A2B2+sin2C [using the formula of sin2A+sin2B]

2sin(A+B)cos(AB)sin2C2sin(A+B)cos(AB)+sin2C

=2sinCcos(AB)2sinCcosC2sinCcos(AB)+2sinCcosC A+B=πC

=2sinC[cos(AB)cosC]2sinC[cos(AB)+cosC]

=cos(AB)+cos(A+B)cos(AB)cos(A+B)

=2cos(AB+A+B)2cos(ABA+B)22sin(AB+A+B)2sin(ABA+B)2 [using the formula of cos(AB)±cos(A+B)]

=2cos(2A2)cos(2B2)2sin(2A2)sin(2B2)

=cosAcosBsinAsinB

=cotAcotB

Hence, it is the reduces from of the given equations.



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon