Given that
A+B+C=π
Now
sin2A+sin2B−sin2Csin2A+sin2B+sin2C
2sin2A+2B2cos2A−2B2−sin2C2sin2A+2B2cos2A−2B2+sin2C [using the formula of sin2A+sin2B]
2sin(A+B)cos(A−B)−sin2C2sin(A+B)cos(A−B)+sin2C
=2sinCcos(A−B)−2sinCcosC2sinCcos(A−B)+2sinCcosC ∵A+B=π−C
=2sinC[cos(A−B)−cosC]2sinC[cos(A−B)+cosC]
=cos(A−B)+cos(A+B)cos(A−B)−cos(A+B)
=2cos(A−B+A+B)2cos(A−B−A+B)22sin(A−B+A+B)2sin(A−B−A+B)2 [using the formula of cos(A−B)±cos(A+B)]
=2cos(2A2)cos(2B2)2sin(2A2)sin(2B2)
=cosAcosBsinAsinB
=cotAcotB
Hence, it is the reduces from of the given equations.