The correct option is A 4sinAsinBsinC
Given : A+B+C=π
We have to calculate , sin2A+sin2B+sin2C
As, sinx+siny=2sin(x+y2)cos(x−y2)
sin2A+sin2B+sin2C=2sin(2A+2B2)cos(2A−2B2)+sin2C
=2sin(A+B)cos(A−B)+sin2C
We have, A+B+C=π⇒A+B=π−C and also we know, sin2x=2sinxcosx
⇒sin2A+sin2B+sin2C=2sin(π−C)cos(A−B)+2sinCcosC
=2sinCcos(A−B)+2sinCcosC
=2sinC[cos(A−B)+cos(π−(A+B)]
=2sinC[cos(A−B)−cos(A+B)]
As, cosx−cosy=2sin(x+y2)sin(y−x2)
⇒sin2A+sin2B+sin2C=2sinC[2sin((A−B)+(A+B)2)sin((A+B)−(A−B)2)]
=2sinC[2sinAsinB]
=4sinAsinBsinC