If a, b, c, t are the solution of the equation tan(θ+π4)=3 tan3θ, no two of which have equal tangents . Then, the value of tana+tanb+tanc+tant=
Consider the given equation,
tan(π4+θ)=3tan3θ
Using identity ,
tan(A+B)=tanA+tanB1−tanAtanB&tan3A=3tanA−tan3A1−3tan2A
⇒tan(π4)+tanθ1−tan(π4)tanθ=3(3tanθ−tan3θ1−3tan2θ)
⇒1+tanθ1−tanθ=9tanθ−3tan3θ1−3tan2θ
⇒(1+tanθ)(1−3tan2θ)=(1−tanθ)(9tanθ−3tan3θ)
⇒3tan4θ−6tan2θ+8tanθ−1=0
As a,b,c,t,= are roots of this equation ,
Hence, sum of roots ,
tan(a)+tan(b)+tan(c)+tan(t)= −coeficientoftan3θcoeficientoftan4θ =−01
tan(a)+tan(b)+tan(c)+tan(t)=0
Hence, this is the answer.