wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B+C=π, then the value of sin A+B+Csin A+Ccos C-sin B0tan Acos A+Btan B+C0 is equal to

(a) 0
(b) 1
(c) 2 sin B tan A cos C
(d) none of these

Open in App
Solution

(a) 0

A + B + C = π A + C = π - B, A + B = π - C and B + C = π - AThus the determinant becomes sin π sin π-B cos C-sin B 0 tan Acos π-C tan π-A 0= 0 sin B cos C-sin B 0 tan A-cos C -tan A 0 sin π=0, sin π-B=B, cos π-C=-cos C, tan π-A=-tan AIt is a skew symmetric matrix of the odd order 3. Thus, by property of determinants, we get = 0 0 sin B cos C-sin B 0 tan A-cos C -tan A 0 = 0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon