wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B=π4. Then (1+tanA)(1+tanB)(cotA1)(cotB1)+2 equals

Open in App
Solution

If A+B=π4
taking tan both sides
tan(A+B)=tanπ4=1
tan(A+B)=1
tanA+tanB1tanAtanB=1
tanA+tanB=1tanAtanB
tanA+tanB+tanAtanB+1=2
tanA+tanAtanB+1+tanB=2
tanA(1+tanB)+1(1+tanB)=2
(1+tanA)(1+tanB)=2(1)
Again,
A+B=π4
taking cot of both sides
cot(A+B)=cotπ4=1
cotAcotB1cotB+cotA=1
cotAcotB1=cotA+cotB
cotAcotBcotBcotA+1=1+1
cotB(cotA1)1(cotA1)=2
(cotA1)(cotB1)=2(2)
Now,
(1+tanA)(1+tanB)(cotA1)(cotB1)+2
putting values from (1) and (2)
22+2
=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon