If A+B=π4, where A,B∈R+, then the minimum value of (1+tanA)(1+tanB) is always equal to:
As it is given that A+B=π4, then,
tan(A+B)=tanπ4
tanA+tanB1−tanAtanB=1
tanA+tanB=1−tanAtanB (1)
Simplify (1+tanA)(1+tanB),
(1+tanA)(1+tanB)=1+tanB+tanA+tanAtanB
Then from equation (1),
(1+tanA)(1+tanB)=1+1−tanAtanB+tanAtanB
(1+tanA)(1+tanB)=2