wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A+B=π3 and cosA+cosB=1
then find the value of cosAB2

Open in App
Solution

We have,
A+B=π3andcosA+cosB=1
Now,
CosA+cpsB=1cos(A+B2)cos(AB2)=12cos(12×π3)cos(AB2)=1[A+B=π3]2cosπ6cos(AB2)=12×32×cos(AB2)=13coscos(AB2)=1cos(AB2)=13
Hence, cos(AB2)=13



flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon