If A+B=π3 and cosA+cosB=1 then find the value of cosA−B2
We have, A+B=π3andcosA+cosB=1 Now, CosA+cpsB=1⇒cos(A+B2)cos(A−B2)=1⇒2cos(12×π3)cos(A−B2)=1[∵A+B=π3]⇒2cosπ6cos(A−B2)=1⇒2×√32×cos(A−B2)=1⇒√3coscos(A−B2)=1⇒cos(A−B2)=1√3 Hence, cos(A−B2)=1√3