If (a,b) is positive integral solution of the equation 7x2−2xy+3y2=27 , then max. b + min. a =
3
7x2−2xy+3y2−27=0
⇒ x=(2y±√4y2−28(3y2−27))14
⇒ x=(y±√189−20y2)7
x,y ϵ N ⇒ y2 < 18920 ⇒ y=1or2.
y=1 ⇒x=2 and y=2,x ∉ N
∴ Only solution is x = 2 , y =1 i.e., a=2 , b=1