If (a-b) sin(θ+ϕ) = (a+b) sin(θ−ϕ),find tanθ
We solved similar problems and saw that when we have (θ+α) as and (θ+α) as angles and (a-b) and (a+b) as coefficients, applying componendo - dividendo simplifies the expression (not always!)
⇒ a+ba−b = sin(θ+ϕ)sin(θ−ϕ)
⇒ a+b+a−ba+b−(a−b) = sin(θ+ϕ)+sin(θ+ϕ)sin(θ−ϕ)−sin(θ−ϕ)
⇒ ab = 2sinθcosϕ2cosθsinϕ
⇒ ab = tanθtanϕ
⇒ tanθ = ab tanϕ