The correct option is A ≥ab
Consider the opposite numbers
ax,ax,..... ky times and by,by,.....kx times
AM={ax+ax+.....kytimes}+{by+by+.....kxtimes}kx+ky=kyax+kxbyk(x+y)=yax+xby(x+y)
GM={(ax.ax....kytimes)(by.by....kxtimes)}1k(x+y)
(ax(ky).by(kx))1k(x+y)=(ab)kxyk(x+y)=(ab)xy(x+y).....(i)
As 1x+1y=1,x+yxy=1,i.e,x+y=xy
∴(i)becomesyzx+xbyxy≥ab or axx+byy≥ab
Hence, option 'B' is correct.