If |a×b|2+|a.b|2=144 and |a|=4, then |b| is equal to?
16
8
3
12
Explanation for the correct option:
Step 1. Find the value of |b|:
Given,
|a×b|2+|a.b|2=144 ….(1)
Step 2. Let the angle between a and b is θ, then equation (1) becomes:
|a|2|b|2sin2θ+|a|2|b|2cos2θ=144
⇒ |a|2|b|2(sin2θ+cos2θ)=144
⇒ |a|2|b|2=144 ∵sin2θ+cos2θ=1
⇒ |a||b|=12
⇒ 4|b|=12 ∵a=4
∵|b|=3
Hence, Option ‘C’ is Correct.