The correct option is D I+A
Given, A=[0−tanα/2tanα/20]
I−A=[1tanα/2−tanα/21]
Also,I+A=[1−tanα/2tanα/21]
Now, consider (I−A)[cosα−sinαsinαcosα]
=[1tanα/2−tanα/21]⎡⎢
⎢
⎢
⎢
⎢⎣1−tan2(α/2)1+tan2(α/2)−2tan(α/2)1+tan2(α/2)2tan(α/2)1+tan2(α/2)1−tan2(α/2)1+tan2(α/2)⎤⎥
⎥
⎥
⎥
⎥⎦
Let tan(α/2)=t
=[1t−t1]⎡⎢
⎢
⎢
⎢⎣1−t21+t2−2t1+t22t1+t21−t21+t2⎤⎥
⎥
⎥
⎥⎦
=[1−tt1]
=[1−tanα/2tanα/21]
=I+A