wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=⎢ ⎢0tanα2tanα20⎥ ⎥ and I is the unit matrix, show that I+A=(IA)[cosαsinαsinαcosα].

Open in App
Solution

A=⎢ ⎢0tanα2tanα20⎥ ⎥
I+A=[1001]+⎢ ⎢0tanα2tanα20⎥ ⎥
=⎢ ⎢1tanα2tanα21⎥ ⎥
IA=⎢ ⎢1tanα2tanα21⎥ ⎥
(IA)[cosαsinαsinαcosα]=⎢ ⎢1tanα2tanα21⎥ ⎥[cosαsinαsinαcosα]
=⎢ ⎢cosα+tanα2sinxsinα+tanα2cosαtanα2cosα2+sinαtanα2sinα+cosα⎥ ⎥
=⎢ ⎢1tanα2tanα21⎥ ⎥
Hence proved.

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiplication of Matrices
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon