wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If A=⎢ ⎢0tanα2tanα20⎥ ⎥ show that (I+A)=(IA)[cosαsinαsinαcosα].

Open in App
Solution

A=⎢ ⎢0tanα2tanα20⎥ ⎥,I+A=[1001]+⎢ ⎢0tanα2tanα20⎥ ⎥I+A=⎢ ⎢1tanα2tanα21⎥ ⎥(1)IA=[1001]⎢ ⎢0tanα2tanα20⎥ ⎥=I+A=[1001]+⎢ ⎢1tanα2tanα21⎥ ⎥(IA)[cosαsinαsinαcosα]=⎢ ⎢1tanα2tanα21⎥ ⎥[cosαsinαsinαcosα]=⎢ ⎢cosα+sinαtanα2sinα+cosαtanα2cosαtanα2+sinαsinαtanα2+cosα⎥ ⎥(2)cosα+sinαtanα2cosα+sinα(1cosα)sinαcosα+1cosα1(3)cosαtanα2+sinαcosα(1cosα)sinα+sinαcosα+cos2αsinα+sinαcosα+cos2α+sin2αsinαcosα+1sinαtanα2(4)I+A=⎢ ⎢1tanα2tanα21⎥ ⎥(IA)[cosαsinαsinαcosα]=⎢ ⎢1tanα2tanα21⎥ ⎥I+A=(IA)[cosαsinαsinαcosα]
(Hence Proved)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebraic Operations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon