IfA=⎡⎢⎣1000110−24⎤⎥⎦,I=⎡⎢⎣100010001⎤⎥⎦andA−1=16(A2+αA+βI)⇒A−1A=16(A2A+αAA+βIA)⇒6I=A3+αA2+βA−−−−−−−1A2=⎡⎢⎣1000110−24⎤⎥⎦⎡⎢⎣1000110−24⎤⎥⎦=⎡⎢⎣1000−150−1014⎤⎥⎦A3=⎡⎢⎣1000−150−1014⎤⎥⎦⎡⎢⎣1000110−24⎤⎥⎦=⎡⎢⎣1000−11190−3846⎤⎥⎦fromequation−−−−1⎡⎢⎣600060006⎤⎥⎦=⎡⎢⎣1000−11190−3846⎤⎥⎦+α⎡⎢⎣1000−150−1014⎤⎥⎦+β⎡⎢⎣1000110−24⎤⎥⎦comparingelementsonbothsidesgivesα+β=5and−α+β=17Hence,β=11