The correct option is C [10232−1232]
A=[1012]
A=I+B
where I is the identity matrix and B=[0011]
B2=B
⇒B is an idempotent matrix.
So, B=B2=B3=⋯=B32
Now, A32=(I+B)32
⇒A32=I+32C1B+32C2B2+32C3B3+⋯+32C32B32
⇒A32=I+32C1B+32C2B+32C3B+⋯+32C32B
⇒A32=I+( 32C1+32C2+⋯+32C32 )B
⇒A32=I+(232−1)B
∴A32=[10232−1232]