Given
A=⎡⎢⎣111111111⎤⎥⎦
To prove :
An=⎡⎢⎣3n−13n−13n−13n−13n−13n−13n−13n−13n−1⎤⎥⎦,n∈N.
Proof :
Let P(n) be the given statement.
For n=1,
P(1)=A=⎡⎢⎣303030303030303030⎤⎥⎦=⎡⎢⎣111111111⎤⎥⎦=A
Therefore, statement is true for n=1.
Now, let us assume that statement is true for n=k.
P(k):Ak=⎡⎢
⎢⎣3k−13k−13k−13k−13k−13k−13k−13k−13k−1⎤⎥
⎥⎦
Now, we shall prove the statement for n=k+1, we have to show,
P(k+1)=Ak+1=⎡⎢
⎢⎣3k3k3k3k3k3k3k3k3k⎤⎥
⎥⎦
LHS = Ak+1=Ak.A
=⎡⎢
⎢⎣3k−13k−13k−13k−13k−13k−13k−13k−13k−1⎤⎥
⎥⎦⎡⎢⎣111111111⎤⎥⎦
=⎡⎢
⎢⎣3k3k3k3k3k3k3k3k3k⎤⎥
⎥⎦ = RHS
Statement is true for n=k+1.
Hence, by principal of mathematical induction, statemebt is true for all n, where n∈N.