The correct option is A 144
We have, A=⎡⎢⎣12−1−1122−11⎤⎥⎦
⇒|A|=1(1+2)−2(−1−4)−1(1−2)
=3+10+1=14
We know that, for a square matrix of order n,
adj(adjA)=|A|n−2A, if |A|≠0
⇒det(adj(adjA))=||A|n−2A|
⇒det(adj(adjA))=(|A|n−2)n|A|
⇒det(adj(adjA))=|A|n2−2n+1
Here, n=3 and |A|=14
Therefore, det(adj(adjA))=(14)32−2×3+1=144.