If A=[1221] and f(x)=1+x1−x, then f(A) is
f(A)=I+AI−A
(I−A)f(A)=(I+A)
multiplying both sides by (I−A)−1
⇒f(A)=(I+A)(I−A)−1
I+A=[1001]+[1221]=[2222]
I−A=[1001]−[1221]=[0−2−20]
For inverse of (I−A)
|I−A|=0−(−2)(−2)=−4
adj(I−A)=[0220]
(I−A)−1=−14[0220]
f(A)=[2222]×[0−1/2−1/20]
f(A)=[−1−1−1−1]
Answer: option (B)