The correct option is A B′A′
We have,
A′=⎡⎢⎣1−4−2235⎤⎥⎦
and B′=[1−12304]
∴AB=[1−23−425]×⎡⎢⎣13−1024⎤⎥⎦
=[1+2+63+0+12−4−2+10−12+0+20]=[91548]
∴(AB)′=[94158]...(i)
and
B′A′=[1−12304]×⎡⎢⎣1−4−2235⎤⎥⎦
=[1+2+6−4−2+103+0+12−12+0+20]
=[94158]...(ii)
From (i) and (ii), we get
(AB)′=B′A′