The correct option is B 4 and not 1
Given, A=[1−32k] and A2−4A+10I=A
⇒[1−32k][1−32k]−4[1−32k]+10[1001]=[1−32k]
⇒[−5−3−3k2+2k−6+k2]−[4−1284k]+[100010]=[1−32k]
⇒[19−3k−6+2k4+k2−4k]=[1−32k]
⇒9−3k=−3,−6+2k=2 ....(i)
and 4+k2−4k=k
k2−5k+4=0
⇒(k−4)(k−1)=0⇒k=4,1
But k=1 is not satisfied the equation (i).