If A =,[1/43/4ab] find a and b so that A2 = I (where I = Identity matrix)
A=[1/43/4ab]
A2=[1/43/4ab][1/43/4ab]=⎡⎣(116)+(3a4)(316)+(3b4)(a4)+(ab)(3a4)+(b.b)⎤⎦=[1001]
Comparing the matrices, we get
(3/16) + (3b/4) = 0
3b/4 = -3/16
→b = -1/4 …………………………………….. (1)
1/16 + 3a/4 = 1
3a/4 = 1 – (1/16)
3a/4 = 15/16
→a = 5/4 …………………………………….. (2)
Therefore a = 5/4, b = -1/4