We have, A=[2−243]
Now, cofactor of A a11=(−1)1+1|3|
=3
a12=(−1)1+2|4|
=−4
a21=(−1)2+1|−2|
=2
a22=(−1)2+2|2|
=2
∴adj A=[3−422]
=[32−42]
Now, |A|=[2−243]
=(2)(3)−(4)(−2)
=6+8
=14≠0
A is non-singular.
∴A−1 exists A−1=adj A|A|
=114[32−42]
=⎡⎢
⎢⎣314214−414214⎤⎥
⎥⎦=⎡⎢
⎢
⎢⎣31417−2717⎤⎥
⎥
⎥⎦