If A=⎡⎢⎣2−3532−411−2⎤⎥⎦, find A−1. Using A−1 solve the system of equations 2x−3y+5z=11,3x+2y−4z=−5,x+y−2z=−3
The given system can be written as AX=B, where
A=⎡⎢⎣2−3532−411−2⎤⎥⎦,X=⎡⎢⎣xyz⎤⎥⎦ and B=⎡⎢⎣11−5−3⎤⎥⎦
∴ |A|=⎡⎢⎣2−3532−411−2⎤⎥⎦=2(−4+4)−(−3)(6+4)+5(3−2)
=0−6+5=−1≠0
Thus, A is non-singular. Therefore, its inverse exists.
Therefore, the given system is consistent and has a unique solution given by X=A−1B.
Cofactors of A are
A11=−4+4=0,A12=−(−6+4)=2,A13=3−2=1A21=−(6−5)=−1,A22−4−5=−9,A23=−(2+3)=−5A31=(12−0)=2,A32=−(−8−15)=23,A33=4+9=13
adj(A)=⎡⎢⎣021−1−9−522313⎤⎥⎦T=⎡⎢⎣0−122−9231−513⎤⎥⎦
∴ A−1=1|A|(adj)(A)=1−1⎡⎢⎣0−122−9231−513⎤⎥⎦=⎡⎢⎣01−2−29−23−15−13⎤⎥⎦
Now, X=A−1B⇒⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣01−2−29−23−15−13⎤⎥⎦⎡⎢⎣11−5−3⎤⎥⎦
⇒⎡⎢⎣xyz⎤⎥⎦−⎡⎢⎣0−5+6−22−45+69−11−25+39⎤⎥⎦=⎡⎢⎣123⎤⎥⎦
Hence, x=1, y=2 and z=3