1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Adjoint of a Matrix
If A=[ 2 -3...
Question
If
A
=
⎡
⎢
⎣
2
−
3
5
3
2
−
4
1
1
−
2
⎤
⎥
⎦
, find
A
−
1
. Using
A
−
1
solve the system of equations
2
x
−
3
y
+
5
z
=
11
3
x
+
2
y
−
4
z
=
5
x
+
y
−
2
z
=
3
Open in App
Solution
Given system of equations
2
x
−
3
y
+
5
z
=
11
3
x
+
2
y
−
4
z
=
5
x
+
y
−
2
z
=
3
This can be written as
A
X
=
B
where
A
=
⎡
⎢
⎣
2
−
3
5
3
2
−
4
1
1
−
2
⎤
⎥
⎦
,
X
=
⎡
⎢
⎣
x
y
z
⎤
⎥
⎦
,
B
=
⎡
⎢
⎣
11
5
3
⎤
⎥
⎦
Here,
|
A
|
=
2
(
−
4
+
4
)
+
3
(
−
6
+
4
)
+
5
(
3
−
2
)
⇒
|
A
|
=
−
6
+
5
=
−
1
Since,
|
A
|
≠
0
Hence, the system of equations is consistent and has a unique solution given by
X
=
=
A
−
1
B
A
−
1
=
a
d
j
A
|
A
|
and
a
d
j
A
=
C
T
C
11
=
(
−
1
)
1
+
1
∣
∣
∣
2
−
4
1
−
2
∣
∣
∣
⇒
C
11
=
−
4
+
4
=
0
C
12
=
(
−
1
)
1
+
2
∣
∣
∣
3
−
4
1
−
2
∣
∣
∣
⇒
C
12
=
−
(
−
6
+
4
)
=
2
C
13
=
(
−
1
)
1
+
3
∣
∣
∣
3
2
1
1
∣
∣
∣
⇒
C
13
=
3
−
2
=
1
C
21
=
(
−
1
)
2
+
1
∣
∣
∣
−
3
5
1
−
2
∣
∣
∣
⇒
C
21
=
−
(
6
−
5
)
=
−
1
C
22
=
(
−
1
)
2
+
2
∣
∣
∣
2
5
1
−
2
∣
∣
∣
⇒
C
22
=
−
4
−
5
=
−
9
C
23
=
(
−
1
)
2
+
3
∣
∣
∣
2
−
3
1
1
∣
∣
∣
⇒
C
23
=
−
(
2
+
3
)
=
−
5
C
31
=
(
−
1
)
3
+
1
∣
∣
∣
−
3
5
2
−
4
∣
∣
∣
⇒
C
31
=
12
−
10
=
2
C
32
=
(
−
1
)
3
+
2
∣
∣
∣
2
5
3
−
4
∣
∣
∣
⇒
C
32
=
−
(
−
8
−
15
)
=
23
C
33
=
(
−
1
)
3
+
3
∣
∣
∣
2
−
3
3
2
∣
∣
∣
⇒
C
33
=
4
+
9
=
13
Hence, the co-factor matrix is
C
=
⎡
⎢
⎣
0
2
1
−
1
−
9
−
5
2
23
13
⎤
⎥
⎦
⇒
a
d
j
A
=
C
T
=
⎡
⎢
⎣
0
−
1
2
2
−
9
23
1
−
5
13
⎤
⎥
⎦
⇒
A
−
1
=
a
d
j
A
|
A
|
=
1
−
1
⎡
⎢
⎣
0
−
1
2
2
−
9
23
1
−
5
13
⎤
⎥
⎦
⇒
A
−
1
=
⎡
⎢
⎣
0
1
−
2
−
2
9
−
23
−
1
5
−
13
⎤
⎥
⎦
Solution is given by
⎡
⎢
⎣
x
y
z
⎤
⎥
⎦
=
⎡
⎢
⎣
0
1
−
2
−
2
9
−
23
−
1
5
−
13
⎤
⎥
⎦
⎡
⎢
⎣
11
5
3
⎤
⎥
⎦
⎡
⎢
⎣
x
y
z
⎤
⎥
⎦
=
⎡
⎢
⎣
5
−
6
−
22
+
45
−
69
−
11
+
25
−
39
⎤
⎥
⎦
⎡
⎢
⎣
x
y
z
⎤
⎥
⎦
=
1
4
⎡
⎢
⎣
8
4
12
⎤
⎥
⎦
⎡
⎢
⎣
x
y
z
⎤
⎥
⎦
=
⎡
⎢
⎣
−
1
−
46
−
25
⎤
⎥
⎦
Hence,
x
=
−
1
,
y
=
−
46
,
z
=
−
25
Suggest Corrections
0
Similar questions
Q.
If
A
=
⎡
⎢
⎣
2
−
3
5
3
2
−
4
1
1
−
2
⎤
⎥
⎦
, find
A
−
1
. Use it to solve the system of equations
2
x
−
3
y
+
5
z
=
11
3
x
+
2
y
−
4
z
=
−
5
x
+
y
−
2
z
=
−
3
Q.
If
A
=
⎡
⎢
⎣
2
−
3
5
3
2
−
4
1
1
−
2
⎤
⎥
⎦
, then find
A
−
1
and hence solve the system of linear equations
2
x
−
3
y
+
5
z
=
11
,
3
x
+
2
y
−
4
z
=
−
5
and
x
+
y
−
2
z
=
−
3
Q.
If
A
=
⎡
⎢
⎣
2
−
3
5
3
2
−
4
1
1
−
2
⎤
⎥
⎦
,
find
A
−
1
.
Hence using
A
−
1
solve the system of equations
2
x
−
3
y
+
5
z
=
11
,
3
x
+
2
y
−
4
z
=
−
5
,
x
+
y
−
2
z
=
−
3.
Q.
If
A
=
⎡
⎢
⎣
2
−
3
5
3
2
−
4
1
1
−
2
⎤
⎥
⎦
,
find
A
−
1
.
Hence using
A
−
1
solve the system of equations
2
x
−
3
y
+
5
z
=
11
,
3
x
+
2
y
−
4
z
=
−
5
,
x
+
y
−
2
z
=
−
3.
Q.
If
A
=
⎡
⎢
⎣
2
−
3
5
3
2
−
4
1
1
−
2
⎤
⎥
⎦
, then find
A
−
1
.
Use it to solve the system of equations
2
x
−
3
y
+
5
z
=
11
3
x
+
2
y
−
4
z
=
−
5
x
+
y
−
2
z
=
−
3
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Adjoint and Inverse of a Matrix
MATHEMATICS
Watch in App
Explore more
NCERT - Standard XII
Adjoint of a Matrix
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app