If A=[31−12] and I=[1001], find k so that A2=5A+kI.
Open in App
Solution
A2=[31−12][31−12]=[85−52],5A=[155−510],kI=[k00k] Now A2=5A+kI so, [85−53]=[155−510]+[k00k]⇒[85−53]=[15+k5−510+k] On comparing the corresponding elements in both matrices, we get: 8 =15 +k, 3 =10 +k ∴k=−7.