If A=[31−12], show that A2−5A+7I=0. Hence, find A−1
Given A=[31−12],A2=AA=[31−12][31−12]=[9−13+2−3−2−1+4]=[85−53]
Now, A2−5A+7I=[85−53]−5[31−12],+7[1001]=[85−53]−[155−510]+[7007]
=[8−15+75−5+0−5+5+03−10+7]=[0000]=0
∴A2−5A+7I=0
∵ |A|=[31−12]=6+1=7≠0 ∴ A−1 exists.
Now, A.A−5A=−7I
Multiply by A−1 on both sides, we get
A.A(A−1)−5AA−1=−7IA−1
⇒AI−5I=7A−1 (using AA−1=I and IA−1=A−1)
⇒A−1=−17(A−5I)⇒A−1=17(5I−A)
=17([5005]−[31−12])=17[2−113] ∴ A−1=17[2−113]
Note: When we multiply by A−1 in the given equation, it is necessary that |A|≠0, If |A|=0, then A−1 does not exist